Saturday, 26 August 2017

Chapter 03:Maths: XII :Trigonometric Functions DPP: Test 4

Chapter 3# : Trigonometric Functions
Subject : Maths                                                         Class XII
Total Marks: 20                                                Time : 40 Min

Q 1 Answer the following questions                                       (5M)
a) The solutions of a trigonometric equation which are generalised by using its periodicity are known as _____.
i) General Solution  ii) Principle Solution iii) Normal Solution iv) Ordinary Solution
b) Which of the following is not a trigonometric equation.
i) Cos x = ⎷3/2      ii) sec Ө = cosec x   iii) 3x = 17  iv)  cos x + Sin 3x + tan 5x = 0
c) 1 + Cot2Ө = ____________
i) Sec2Ө   ii) Cosec2Ө  iii) tan2Ө  iv) Cos2Ө
d) If Sin Ө = 0 then Ө = _______
i) nπ ii) (2n+1)π/2   iii) 2nπ  iv) (2n+1)π
e) For Cos x = ½ then the general solution of x is
i) 0  ii) π/6,5π/6  iii) π/6,5π/6,13π/6…..    iv) (n+1) π/6
Q2 Prove the following equations (any three)                     (6M)
a) If sin 2x =  sin 2β then x = nπ 士 β
b) Find the Principle solution of cot x = ⎷3
c) Find the general Solution of tan x = ⎷3
d) Find the Principle solution of Cos x = - 1/2
Q3 Solve the following  (any three)                                       (9M)
a) If  Cos 2x = -1/ 2 then find the general Solution of equation.
b) Find the general solution of sin x + sin 3x  + sin 5x=0
c) Convert 60030’10’’ into radian measurement.
d) Find the degree measurement of following angle 20c,50c.

Chapter 3 : MATHS : XII : Trigonometric Functions: Inverse Trigonometry : Test 3

Chapter 3#: TRIGONOMETRIC FUNCTIONS- INVERSE TRIGONOMETRY                                                                  Marks -20                                                            Time - 30 Min
 
Q1) Find the Principal value of                                         (6M)
       a) cos-1(-1/2)   b) tan-1(-1)     c) cot-1(-1/√3)     
Q2) Find the value of                                                        (4M)
       a) cos-1(1/2) + 2 sin-1(1/2)
       b) tan-1(1) + 2cos-1(1/2) + 3sin-1(1/2)
Q3) Prove the property                                                     (4M)
       a) tan-1(-x) = - tan-1(x)
       b) sec-1(-x) = π - sec-1(x)
Q4) Show that                                                                   (3M)
        cos-1(4/5) + cos-1(12/13)  = cos-1(33/65)
Q5) Show that  tan-1(1/2) + tan-1(2/11) = tan-1(3/4)       (3M)

Chapter 01 : Physics: XII : Circular Motion : Test 3: Numericals

TEST 3@ : Circular Motion (Numerical)
Marks :20M                                                     Time : 40 Min
 
1) A turntable rotates at 120 rev/min. Calculates its angular speed in rad/sec and in degrees/s.                                                     (3M)
2) An object of mass 50 g moving along circumference of circle of radius 2m with constant angular speed 10 rad/sec. Calculate 
a) Linear Speed  b) Force directed towards center.                (4M)
3) A flat curve on highway radius curvature 300 m. A car rounds the curve at a speed of 24 m/s. What is the minimum value of coefficient of friction that will prevent vehicle from sliding.   (2M)
4) An aircraft in level flight completes a circular turn in 2 minutes.
a) What is radius of circular turn? b)What is the angle of banking , if the velocity of aircraft is 60 m/s?                                          (4M)
5) A meterguage train is moving 90 km/hr along a curved road of radius of curvature 600 m at a certain place.Find the elevation of outer rail above inner rail, so that there is no side pressure on rail.                                                             (g = 9.8 m/s2)                 (3M)
6) In "Well of death" motor cyclist having mass of 60 kg move in a spherical cage of radius 4m. Calculate the least velocity with which he must pass highest point without loosing. Also calculate his angular speed at highest point.                                                (4M)

Thursday, 24 August 2017

Solar Cell : LAM Material : Down Conversion Phosphor

Solar Cell : LAM material : Down Conversion Phosphor

Introduction : The NIR and visible emitting LAM phosphor has been prepared by simple time consuming one step Combustion synthesis process using mixture of two fuels. As synthesized phosphor has been characterised by powder x-ray diffraction (XRD) and photo-luminescence (PL) techniques. The SEM morphology of prepared phosphor have been studied. 
Result : Successfully prepared LAM- Bi2+, Eu3+ ,Yb3+doped phosphors. Strong NIR emission at 980 nm can be ascribed to Yb3+ and visible emission of Bi2+ and Eu3+  around 440 nm to 620 nm in the LAM lattices respectively. Also the visible emission results indicated that blue and red phosphors are suitable candidates for the fabrication of near UV InGaN based LEDs. 
Conclusion : The LAM phosphors are prime candidates for quantum cutting down-conversion phosphor in Si-solar cell and can be used to improve the efficiency of solar cell.
  Video (1) : Combustion Synthesis - Exothermic Reaction
                                          Figure (1) : PL LAM : Bi2+

                                         Figure (2) : PL LAM :Eu3+

                                         Figure (3) : PL LAM : Yb3+
                                       Figure (4) : LAM SEM

Tricks

Halogen Derivatives and Alcohol, Phenol, Ether

  Pathak’s Academy Spectrum 2024 Topics : Chapters 10,11 Marks: 25                                                                          ...