Tuesday, 22 December 2020

Unbalanced reaction to balance with answers key

 Q balance the following reactions 

  1. NaH2PO4 -> NaPO3 + H2O
  2. H2CO3 -> H2O + CO2
  3. BaSO4 + H2SO4 -> Ba(HSO4)2
  4. CaCO3 -> CaO + CO2
  5. CaO + H2O -> Ca(OH)2
  6. H2SO3 -> H2O + SO2
  7. H3PO4 + Ca(OH)2 -> CaHPO4.2H2O
  8. NaPO3 + CuO -> NaCuPO4
  9. SO3 + H2O -> H2SO4
  10. Be(OH)2 -> BeO + H2O
  11. BaO + H2O -> Ba(OH)2
  12. Na2SO3 + S -> Na2S2O3
  13. SO2 + H2O -> H2SO3
  14. Li2O + H2O -> LiOH
  15. Na2HPO4 -> Na4P2O7 + H2O
  16. H4As2O7 -> As2O5 + H2O
  17. CaC2 + N2 -> CaCN2 + C
  18. Mg(OH)2 -> (MgOH)2O + H2O
  19. HAsO3 -> As2O5 + H2O
  20. KHSO4 -> K2S2O7 + H2O
  21. H3PO4 -> H4P2O7 + H2O
  22. NaCl + NH4HCO3 -> NaHCO3 + NH4Cl
  23. HAsO2 -> As2O3 + H2O
  24. UO3 + H2 -> UO2 + H2O
  25. CdSO4 + H2S -> CdS + H2SO4
Answers Key
  1. Balanced
  2. Balanced
  3. Balanced
  4. Balanced
  5. Balanced
  6. Balanced
  7. Balanced
  8. Balanced
  9. Balanced
  10. Balanced
  11. Balanced
  12. Balanced
  13. Balanced
  14. Li2O + H2O -> 2LiOH
  15. 2Na2HPO4 -> Na4P2O7 + H2O
  16. H4As2O7 -> As2O5 + 2 H2O
  17. CaC2 + N2 -> CaCN2 + 2C
  18. 2Mg(OH)2 -> (MgOH)2O + H2O
  19. 2HAsO3 -> As2O5 + H2O
  20. 2KHSO4 -> K2S2O7 + H2O
  21. 2H3PO4 -> H4P2O7 + H2O
  22. Balanced
  23. 2HAsO2 -> As2O3 + H2O
  24. Balanced
  25. Balanced

Wednesday, 16 December 2020

MCQs on Complex no, class 11th

Instructions
  • Each question carry 2 Marks
  • Total 40 marks test, 20 questions
  • Time- 90 minutes
  • Answer key will be provided after the exam get over

Q1) The value of √(-121)  is

(a) -11i

(b) 11i

(c) -12i

(d) 12i

Q2)  The value of √(-441) is

(a) 21i

(b) -21i

(c) ±21i

(d) All of these

Q3) The value of √(-25) + 3√(-4) + 2√(-9) is

(a) 13i

(b) -13i

(c) 17i

(d) -17i

Q4)  If z lies on |z| = 1, then 2/z lies on

(a) a circle

(b) an ellipse

(c) a straight line

(d) a parabola

Q5)  If ω is an imaginary cube root of unity, then (1 + ω – ω²)7 equals

(a) 128 ω

(b) -128 ω

(c) 128 ω²

(d) -128 ω²

Q6)  The least value of n for which {(1 + i)/(1 – i)}n is real, is
(a) 1
(b) 2
(c) 3
(d) 4

Q7)  Let z be a complex number such that |z| = 4 and arg(z) = 5π/6, then z =
(a) -2√3 + 2i
(b) 2√3 + 2i
(c) 2√3 – 2i
(d) -√3 + i

Q8)  The value of i-999 is
(a) 1
(b) -1
(c) i
(d) -i

Q9)  Let z1 and z2 be two roots of the equation z² + az + b = 0, z being complex. Further assume that the origin, z1 and z1 form an equilateral triangle. Then
(a) a² = b
(b) a² = 2b
(c) a² = 3b
(d) a² = 4b

Q10)  The complex numbers sin x + i cos 2x are conjugate to each other for
(a) x = nπ
(b) x = 0
(c) x = (n + 1/2) π
(d) no value of x

Q11) The curve represented by Im(z²) = k, where k is a non-zero real number, is
(a) a pair of striaght line
(b) an ellipse
(c) a parabola
(d) a hyperbola

Q12)  The value of x and y if (3y – 2) + i(7 – 2x) = 0
(a) x = 7/2, y = 2/3
(b) x = 2/7, y = 2/3
(c) x = 7/2, y = 3/2
(d) x = 2/7, y = 3/2

Q13) Find real θ such that (3 + 2i × sin θ)/(1 – 2i × sin θ) is imaginary
(a) θ = nπ ± π/2 where n is an integer
(b) θ = nπ ± π/3 where n is an integer
(c) θ = nπ ± π/4 where n is an integer
(d) None of these

Q14) If {(1 + i)/(1 – i)}n = 1 then the least value of n is
(a) 1
(b) 2
(c) 3
(d) 4

Q15) If arg (z) < 0, then arg (-z) – arg (z) =
(a) π
(b) -π
(c) -π/2
(d) π/2

Q16) if x + 1/x = 1 find the value of x2000 + 1/x2000 is
(a) 0
(b) 1
(c) -1
(d) None of these

Q17) The value of √(-169) is
(a) 13i
(b) -13i
(c) ±13i
(d) None of these

Q18) If the cube roots of unity are 1, ω, ω², then the roots of the equation (x – 1)³ + 8 = 0 are
(a) -1, -1 + 2ω, – 1 – 2ω²
(b) – 1, -1, – 1
(c) – 1, 1 – 2ω, 1 – 2ω²
(d) – 1, 1 + 2ω, 1 + 2ω²

Q19)  (1 – w + w²)×(1 – w² + w4)×(1 – w4 + w8) × …………… to 2n factors is equal to
(a) 2n
(b) 22n
(c) 23n
(d) 24n

Q20) The modulus of 5 + 4i is
(a) 41
(b) -41
(c) √41
(d) -√41





Tricks

Halogen Derivatives and Alcohol, Phenol, Ether

  Pathak’s Academy Spectrum 2024 Topics : Chapters 10,11 Marks: 25                                                                          ...