Friday, 6 October 2017

Class 12 : MATHS : SOLUTIONS:Chapter #3 : Trigonometric Functions


SOLUTIONS : CHAPTER 3 # TRIGONOMETRIC FUNCTIONS
Subject : Maths                                                         Class XII
Total Marks: 15                                                Time : 40 Min
Note: Following are the solution for The Question Bank   https://spectrum6.blogspot.in/2017/08/trigonometry-problems-simple-level-v.html
ANS : Q 1 Answer the following questions                       (5M)
a) The solutions of a trigonometric equation of an unknown angle x, between 0 to 2π are called (ii)Principle Solution.
b) Which of the following is not a trigonometric equation.
    iii) 3x = 17.
c) 1 + Cot2Ө = i) Sec2Ө. 
d) If Cos Ө = 0 then Ө = ii) (2n+1)π/2.
e) For Sin x = ½ then the general solution of x is iii) π/6,5π/6,13π/6
ANS : Q2 Prove the following equations (any three)       (6M)
a) If tan 2x =  tan 2β then x = nπ  β
           As tan 2x =  tan 2β             
           Cos 2x  = Cos 2β
    using result Cos x  = Cos β , x=2nπ β
                  2x  =  2nπ
                 x  =   nπ β   
     tan 2x =  tan 2β  implies  x  =   nπ β  where n       
b) Find the Principle solution of Sin x = 1/2
       Sin x = 1/2 = Sin π /4
       also ,Sin (π-x) = Sin x
    Sin π /4   = Sin (x- π /4) = Sin 3π /4      
    Sin π /4  =  Sin 3π /4 = 1/2
       such that 0 < π /4  < 2π  and 0 < 3π /4 < 2π
    The required solutions are 
         x = π /4 and x = 3π /4.
c) Find the general Solution of CosӨ = 0
        here using CosӨ = 0 = Cos π /2 = Cos 3π /2 
        also using the periodicity, we get
        Cos π /2 = Cos (2π + π /2) =  Cos (4 π + π /2) = ......
     Cos (2nπ + π /2) = 0   for  nZ

d) Find the Principle solution of Cot x = 1/3
                                          tan x  = 3
                                          tan x  = 3 = tan π /3 by using allied    
                                                                                        angles
                                 tan (π + x) =  tan x
                                tan (2π + x)=  tan x
                                 tan (π/3) =  tan (π + π/3) = 3            
                               tan (π/3) =  tan (2π + π/3) = 3
                                   tan (4π/3) =  tan (/3) = 3
Hence x = 4π/3 and 7π/3 are the required Principle solutions of the given equation Cot x = 1/3.

ANS : Q3 Solve the following  (any three)                         (9M)
a) If   3 Cosec x = 2 then find the general Solution of equation. 
                 Cosec x = 2/3
                             sin x = 3/2 = sin π/3
                      sin x = sin π/3
         ∴Using the result that  sin x = sin α implies x= nπ + (-1)nα
        We get,                        x = nπ + (-1)n π/3

∴ The required General Solution is
                    x = {nπ + (-1)n π/3} , where n ϵ Z

b) Find the Principle solution of tan x = -1/3   
     tan π /6 = -1/3   and by using allied angles
     tan (π - x) = - tan x  and
     tan (2π - x) = - tan x
     - tan π /6 = tan (π - π/6) = -1/3
   - tan π /6 = tan (2π - π/6) = -1/3
     tan 5π/6 π /6π /6 π /6= -1/3 =   tan 11π/6
  Hence x = 5π/6 and 11π/6 are the required principal solutions   of given equation.

c) Convert 40020’10’’ into radian measurement.
   Angle in Radian 
         = (π / 180) X Angle in Degree
         = (π / 180) X 40020’10’’
         = (π / 180) X [400 + (20’/ 60)0 + (10’’/60)’ ]
         = (π / 180) X [400 + (20’/ 60)0 + (10’’/60 X 60)0 ]
         = (π / 180) X [40 + 1/3 + 1/360]0
         = (π / 180) X [40 + 0.33 + 0.003]
         = (π / 180) X [40.333]
         = (0.22 π)c
Hence 40020’10’’ = (0.22 π)c

No comments:

Tricks

Halogen Derivatives and Alcohol, Phenol, Ether

  Pathak’s Academy Spectrum 2024 Topics : Chapters 10,11 Marks: 25                                                                          ...