Chapter #3: Properties of Inverse Trigonometry : Test 5
Marks -20 Time - 40 Min
Marks -20 Time - 40 Min
Q1) Show that (6M)
a) 2tan-1x = cos-1(1-x2/1+x2) For x>=0
b) 2tan-1x = tan-1(2x/1-x2) For -1
b) 2tan-1x = tan-1(2x/1-x2) For -1
Q2) Prove the following properties
(6M)
a) sin-1(x) + cos-1(x) = π/2 for x∈[-1,1]
b) tan-1(x) + tan-1(y)
= tan-1((x+y)/(1-xy)),
if x,y > 0 and xy<1 font="">1>
if x,y > 0 and xy<1 font="">1>
Q3) Prove the property (4M)
a) cosec-1(-x) = - cosec-1(x)
b) cot-1(-x) = π - cot-1(x)
Q4) Show that (4M)
tan-1x
+ tan-1(2x/1+x2) = tan-1(3x - x3/1-3x2)
for |x|<1 1="" br="">1>
for |x|<1 1="" br="">1>
Refer :Tricks and Formulae
No comments:
Post a Comment