Friday, 5 February 2021

unit I (notes) BScHSc III Sem 2021

 

Electricity and personal safety:

Concept of ac and dc voltage

 

Direct current (DC) is the flow of electric charge in only one direction. It is the steady state of a constant-voltage circuit. Most well-known applications, however, use a time-varying voltage source. Alternating current (AC) is the flow of electric charge that periodically reverses direction.

Electricity requires a complete path (circuit) to continuously flow.  This is why the shock received from static electricity is only a momentary jolt: the flow of current is necessarily brief when static charges are equalized between two objects. Shocks of self-limited duration like this are rarely hazardous.

Without two contact points on the body for current to enter and exit, respectively, there is no hazard of shock. This is why birds can safely rest on high-voltage power lines without getting shocked: they make contact with the circuit at only one point.

In order for current to flow through a conductor, there must be a voltage present to motivate it. Voltage, as you should recall, is always relative between two points. There is no such thing as voltage “on” or “at” a single point in the circuit, and so the bird contacting a single point in the above circuit has no voltage applied across its body to establish a current through it. Yes, even though they rest on two feet, both feet are touching the same wire, making them electrically common. Electrically speaking, both of the bird’s feet touch the same point, hence there is no voltage between them to motivate current through the bird’s body.

This might lead one to believe that it’s impossible to be shocked by electricity by only touching a single wire. Like the birds, if we’re sure to touch only one wire at a time, we’ll be safe, right? Unfortunately, this is not correct. Unlike birds, people are usually standing on the ground when they contact a “live” wire. Many times, one side of a power system will be intentionally connected to earth ground, and so the person touching a single wire is actually making contact between two points in the circuit (the wire and earth ground):

The ground symbol is a set of three horizontal bars of decreasing width located at the lower-left of the circuit shown, and also at the foot of the person being shocked. In real life, the power system ground consists of some kind of metallic conductor buried deep in the ground for making maximum contact with the earth. That conductor is electrically connected to an appropriate connection point on the circuit with thick wire. The victim’s ground connection is through their feet, which are touching the earth.

Personal Safety with “grounding”

the presence of an intentional “grounding” point in an electric circuit is intended to ensure that one side of it is safe to come in contact with. Note that if our victim in the above diagram were to touch the bottom side of the resistor, nothing would happen even though their feet would still be contacting ground:

Because the bottom side of the circuit is firmly connected to ground through the grounding point on the lower-left of the circuit, the lower conductor of the circuit is made electrically common with earth ground. Since there can be no voltage between electrically common points, there will be no voltage applied across the person contacting the lower wire, and they will not receive a shock. For the same reason, the wire connecting the circuit to the grounding rod/plates is usually left bare (no insulation), so that any metal object it brushes up against will similarly be electrically common with the earth.

Circuit grounding ensures that at least one point in the circuit will be safe to touch. But what about leaving a circuit completely ungrounded? Wouldn’t that make any person touching just a single wire as safe as the bird sitting on just one? Ideally, yes. Practically, no. Observe what happens with no ground at all:

rubber-soled shoes do indeed provide some electrical insulation to help protect someone from conducting shock current through their feet. However, most common shoe designs are not intended to be electrically “safe,” their soles being too thin and not of the right substance. Also, any moisture, dirt, or conductive salts from body sweat on the surface of or permeated through the soles of shoes will compromise what little insulating value the shoe had to begin with. There are shoes specifically made for dangerous electrical work, as well as thick rubber mats made to stand on while working on live circuits, but these special pieces of gear must be in the absolutely clean, dry condition in order to be effective. Suffice it to say, normal footwear is not enough to guarantee protection against electric shock from a power system.

 

frequency“Hz” stands for the unit Hertz.

It is the measure of how rapidly alternating current alternates, otherwise known as frequency. So, the column of figures labeled “60 Hz AC” refers to a current that alternates at a frequency of 60 cycles (1 cycle = period of time where current flows in one direction, then the other direction) per second. The last column, labeled “10 kHz AC,” refers to alternating current that completes ten thousand (10,000) back-and-forth cycles each and every second.


Safety devices in use of electricity :fuse,

earthing, earthing methods, circuit breakers, MCBs (Miniature Circuit Breakers) for domestic safety

   
What is a Fuse?

fuse is an electrical safety device built around a conductive strip that is designed to melt and separate in the event of excessive current. Fuses are always connected in series with the component(s) to be protected from overcurrent, so that when the fuse blows (opens) it will open the entire circuit and stop current through the component(s). A fuse connected in one branch of a parallel circuit, of course, would not affect current through any of the other branches.

Normally, the thin piece of fuse wire is contained within a safety sheath to minimize hazards of arc blast if the wire burns open with violent force, as can happen in the case of severe overcurrents. In the case of small automotive fuses, the sheath is transparent so that the fusible element can be visually inspected. Residential wiring used to commonly employ screw-in fuses with glass bodies and a thin, narrow metal foil strip in the middle. A photograph showing both types of fuses is shown here:

 

What is earthing?

Why Earthing is Important?

The primary purpose of earthing is to avoid or minimize the danger of electrocution, fire due to earth leakage of current through undesired path and to ensure that the potential of a current carrying conductor does not rise with respect to the earth than its designed insulation.

When the metallic part of electrical appliances (parts that can conduct or allow passage of electric current) comes in contact with a live wire, maybe due to failure of installations or failure in cable insulation, the metal become charged and static charge accumulates on it. If a person touches such a charged metal, the result is a severe shock.

To avoid such instances, the power supply systems and parts of appliances have to be earthed so as to transfer the charge directly to the earth. This is why we need Electrical Earthing or Grounding in electrical installation systems.

 

The basic needs of Earthing.

·         To protect human lives as well as provide safety to electrical devices and appliances from leakage current.

·         To keep voltage as constant in the healthy phase (If fault occurs on any one phase).

·         To Protect Electric system and buildings form lighting.

·         To serve as a return conductor in electric traction system and communication.

·         To avoid the risk of fire in electrical installation systems.

 

Proper way of Earthing.

·         Earth pin of 3-pin lighting plug sockets and 4-pin power plug should be efficiently and permanently earthed.

·         All metal casing or metallic coverings containing or protecting any electric supply line or apparatus such as GI pipes and conduits enclosing VIR or PVC cables, iron clad switches, iron clad distribution fuse boards etc should be earthed (connected to earth).

·         The frame of every generator, stationary motors and metallic parts of all transformers used for controlling energy should be earthed by two separate and yet distinct connections with the earth.

·         In a dc 3-wire system, the middle conductors should be earthed at the generating station.

·         Stay wires that are for overhead lines should be connected to earth by connecting at least one strand to the earth wires.

 

What is a Circuit Breaker?

Circuit breakers are specially designed switches that automatically open to stop current in the event of an overcurrent condition. Small circuit breakers, such as those used in residential, commercial and light industrial service are thermally operated. They contain a bimetallic strip (a thin strip of two metals bonded back-to-back) carrying circuit current, which bends when heated. When enough force is generated by the bimetallic strip (due to overcurrent heating of the strip), the trip mechanism is actuated and the breaker will open. Larger circuit breakers are automatically actuated by the strength of the magnetic field produced by current-carrying conductors within the breaker, or can be triggered to trip by external devices monitoring the circuit current (those devices being called protective relays).

Because circuit breakers don’t fail when subjected to overcurrent conditions—rather, they merely open and can be re-closed by moving a lever—they are more likely to be found connected to a circuit in a more permanent manner than fuses. A photograph of a small circuit breaker is shown here:

 Miniature Circuit Breakers (MCBs)

All fuses need to be replaced with MCB for better safety and control when they have done their job in the past. Unlike a fuse, an MCB operates as automatic switch that opens in the event of excessive current flowing through the circuit and once the circuit returns to normal, it can be reclosed without any manual replacement. MCBs are used primarily as an alternative to the fuse switch in most of the circuits. A wide variety of MCBs have been in use nowadays with breaking capacity of 10KA to 16 KA, in all areas of domestic, commercial and industrial applications as a reliable means of protection.

MCBs are of time delay tripping devices, to which the magnitude of overcurrent controls the operating time. This means, these get operated whenever overload exist long enough to create a danger to the circuit being protected. Therefore, MCBs doesn’t respond to transient loads such as switches surges and motor starting currents. Generally, these are designed to operate at less than 2.5 milliseconds during short circuit faults and 2 seconds to 2 minutes in case of overloads (depending on the level of current).

No comments:

Tricks

Halogen Derivatives and Alcohol, Phenol, Ether

  Pathak’s Academy Spectrum 2024 Topics : Chapters 10,11 Marks: 25                                                                          ...